Sección 1 Seminario de Estadística: Análisis de Datos con R

Curso del posgrado conjunto en Ciencias Matemáticas PCCM UNAM UMICH 2023-2

1.1 Temario

  1. Introducción a R y RStudio

  2. Manejo de proyectos

  3. Bases de datos en R

  4. Visualización de datos

  5. Estadística descriptiva

  6. Inferencia estadística

  7. Estadística multivariada

  8. Análisis de regresión

1.2 Referencias

[1] Agresti, Alan. An introduction to categorical data analysis. John Wiley & Sons, 2018.

[2] Casella, George, and Roger L. Berger. Statistical inference. Cengage Learning, 2021.

[3] Crawley, Michael J. The R book. John Wiley & Sons, 2012.

[4] Wickham, Hadley, and Garrett Grolemund. R for data science: import, tidy, transform, visualize, and model data. O Reilly Media, Inc., 2016.

[5] Zamora Saiz, Alfonso, et al. An Introduction to Data Analysis in R: Hands-on Coding, Data Mining, Visualization and Statistics from Scratch., Springer (2020).

1.4 DataCamp

DataCamp
DataCamp

This class is supported by DataCamp, the most intuitive learning platform for data science and analytics. Learn any time, anywhere and become an expert in R, Python, SQL, and more. DataCamp’s learn-by-doing methodology combines short expert videos and hands-on-the-keyboard exercises to help learners retain knowledge. DataCamp offers 350+ courses by expert instructors on topics such as importing data, data visualization, and machine learning. They’re constantly expanding their curriculum to keep up with the latest technology trends and to provide the best learning experience for all skill levels. Join over 6 million learners around the world and close your skills gap.

1.5 Cuestionarios

Quiz 1 - 09022023